Submitted by amonpong.k on Thu, 05/23/2024 - 14:50
Palaeoecological Reconstruction of Serows and Gorals (Bovidae: Caprinae) from the Pleistocene of Thailand using Dental Mesowear and Hypsodonty: Implications for Species Conservation

Issue

Authors

Jakritip Isarankura Na Ayudhya
M.Sc. Program in Zoology, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
Thanakul Wannaprasert
Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
Rasmi Shoocongdej
Department of Archaeology, Faculty of Archaeology, Silpakorn University, Bangkok 10200, Thailand / The Prehistoric Population and Cultural Dynamics in Highland Pang Mapha Project, Princess Maha Chakri Sirindhorn Anthropology Centre, Bangkok 10170,Thailand
Yaowalak Chaimanee
PALEVOPRIM, UMR CNRS 7262 INEE, Université de Poitiers, Poitiers 86073, France
Kantapon Suraprasit
Morphology of Earth Surface and Advanced Geohazards in Southeast Asia Research Unit (MESA RU), Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

Abstract

Two species in the subfamily Caprinae, the Sumatran serow Capricornis sumatraensis and Chinese goral Naemorhedus griseus are currently distributed in Thailand and listed as vulnerable species. The Himalayan goral N. goral has no dispersion in Thailand, whereas fossil evidence shows the coexistence of all three species during the Pleistocene. However, the diet and habitat preferences of the Pleistocene C. sumatraensis remain disputed and the information on those of the Pleistocene gorals is limited. To clarify the points, the mesowear analysis in combination with measurements of hypsodonty indices were performed on these three caprine taxa. Molar samples were collected from four palaeontological fossil sites (Pha Bong, Khok Sung, Tham Wiman Nakin and Tham Lod Rockshelter), covering a time span from the Middle to Late Pleistocene, and from extant individuals. The mesowear results combined with the hypsodonty index suggest that the Pleistocene populations were likely to be mixed feeders, while the extant C. sumatraensis shows more browsing signals. In agreement with the previous carbon isotope data of tooth enamel, the present study supports the idea that the Pleistocene caprine populations underwent drastic changes in diet and habitat use between the Pleistocene and the present day, possibly driven by the climate change and anthropogenic disturbances since the beginning of the Holocene. In order to protect the extant wildlife populations, the potential restoration of habitats and conservation plan for native caprines are necessary.

Attachment

References

Bacon, A. M., P. Duringer, K. Westaway, R. Joannea- Boyau, J. Zhao, N. Bourgon, E. Dufour, S. Pheng, S. Tep, J.L. Ponche, L. Barnes, A. Blin, E. Patole- Edoumba and F. Demeter. 2018a. Testing the savannah corridor hypothesis during MIS2: the Boh Dambang hyena site in southern Cambodia. Quaternary International 464: 417–439.

Bacon, A.M., N. Bourgon, E. Dufour, C. Zanolli, P. Duringer, J. L. Ponche, P.O. Antoine, L. Shackelford, N.T.M. Huong, T. Sayavonkhamdy, E. Patole- Edoumba and F. Demeter. 2018b. Nam Lot (MIS 5) and Duoi U’Oi (MIS 4) Southeast Asian sites revisited: Zooarchaeological and isotopic evidences. Palaeogeography, Palaeoclimatology, Palaeoecology 512: 132–144.

Bhattacharya, T., T. Bashir, K. Poudyal, S. Sathyakumar and G.K. Saha. 2012. Distribution, occupancy andactivity patterns of goral (Nemorhaedus goral) and serow (Capricornis thar) in Khangchendzonga Biosphere Reserve, Sikkim, India. Mammal. Mammal Study 37: 173–181.

Bocherens, H., F. Schrenk, Y. Chaimanee, O. Kullmer, D. Mörike, D. Pushkina, and. J.-J. Jaeger. 2017. Flexibility of diet and habitat in Pleistocene South Asian mammals: implications for the fate of the giant fossil ape Gigantopithecus. Quaternary International 434: 148–155.

Buranapim, N., N. Sitasuwan, A. Kongprempoon, K. Korkusol, B. Siriaroonrat and S. Kamolnorranath. 2014. Reintroduction and behavioral observations of Chinese gorals (Naemorhedus griseus) in natural conditions. The Thai Journal of Veterinary Medicine 44: 75–83.

Cerling, T.E. and J.M. Harris. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120: 347–363.

Chairat, R. 2007. Habitat and Distribution of Serow (Capricornis sumatraensis) in Phu Khieo Wildlife Sanctuary, Chaiyaphum Province. Phukhieo –EU Project. Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand.

Chaiyarat, R., W. Laohajinda, U. Kutintara and J. Nabhitabhata. 1999. Ecology of the goral (Naemorhedus goral) in Om Koi wildlife sanctuary, Thailand. Natural History Bulletin of the Siam Society 47: 191–205.

Croft, D.A., D.F. Su and S.W. Simpson. 2018. Methods in paleoecology. Springer, Switzerland. 410 pp.

Damuth, J. and C. Janis. 2011. On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biological reviews 86: 733758.

DeSantis, L.R.G, J. Alexander, E.M. Biedron, P.S. Johnson, A.S. Frank, J.M. Martin and L. Williams. 2018. Effects of climate on dental mesowear of extant koalas and two broadly distributed kangaroos throughout their geographic range. PLOS ONE 13: e0201962.

Duckworth, J.W. and J. MacKinnon. 2008. Naemorhedus goral. The IUCN Red List of Threatened Species 2008. Available: www.iucnredlist.org. [online] Assessed June 6, 2019.

Duckworth, J.W., R. Steinmetz and R. Chaiyarat. 2008a. Naemorhedus griseus. The IUCN Red List of Threatened Species 2008. Available: www. iucnredlist.org. [online] Assessed June 6, 2019.

Duckworth, J.W., R. Steinmetz and J. MacKinnon. 2008b. Capricornis sumatraensis. The IUCN Red List of Threatened Species 2008. Available: www. iucnredlist.org. [online] Assessed June 6, 2019.

Duval, M., F. Fang, K. Suraprasit, J.J. Jaeger, M. Benammi, Y. Chaimanee, J.I. Cibanai and R. Grün. 2019. Direct ESR dating of the Pleistocene vertebrate assemblage from Khok Sung locality, Nakhon Ratchasima Province, Northeast Thailand. Palaeontologia Electronica 22:125.

Esposito, M., Y. Chaimanee, J.J. Jaeger. and J.L. Reyss. 1998. Datation des concrétions carbonatées de la Grotte du Serpent (Thaïlande) par la méthode Th/U. Comptes Rendus de l'Académie des Sciences 326: 603608.

Esposito, M., J.L. Reyss, Y. Chaimanee and J.J. Jaeger. 2002. U-series Dating of Fossil Teeth and Carbonates from Snake Cave, Thailand. Journal of Archaeological Science 29: 341349.

Fraser, D. and J.M. Theodor. 2011. Comparing ungulate dietary proxies using discriminant function analysis. Journal of Morphology 272: 15131526.

Fortelius, M. and N. Solounias. 2000. Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates 3301: 136.

Giri, S., A. Aryal, R.K. Koirala, B. Adhikari and D. Raubenheimer. 2011. Feeding Ecology and Distribution of Himalayan Serow (Capricornis thar) in Annapurna Conservation Area, Nepal. World Journal of Zoology 6: 8085.

Heywood, J. J. N. 2010. Explaining patterns in modern ruminant diversity: contingency or constraint? Biological Journal of the Linnean Society 99: 657672.

Hofmann, R.R. 1989. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78: 443457.

Ilyas, O. and J.A. Khan. 2004. Food habits of barking deer (Muntiacus muntjak) and goral (Naemorhedus goral) in Binsar Wildlife Sanctuary, India. Mammalia 67: 521532.

Janis, C.M. 1988. An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preference. Mémoires du Museum national d'Histoire naturelle Série C 53: 367387.

Junaid, M., F. Ahmad, R.C. Saxena and S.K. Bansal. 2012. Botanical composition determination of goral Naemorhedus goral (Artiodactyla: Bovidae): goral rescue centre, Pahalgam, Jammu & Kashmir, India. The European Zoological Journal 1: 99104.

Junshum, P., A. Joomwong and S. Kamtubtim. 2010. A survey and estimate density of serow in Khao Somphot non-hunting area, Lopburi province. Thepsatri Rajabhat University, Thailand.

Kaiser, T.M., D.W.H. Muller, M. Fortelius, E. Schulz, D. Codron and M. Clauss. 2013. Hypsodonty and tooth facet development in relation to diet and habitat in herbivorous ungulates: implications for understanding tooth wear. Mammal Reviews 43: 3446.

Kohn, M.J. and T.E. Cerling. 2002. Stable isotope compositions of biological apatite. Reviews in Mineralogy and Geochemistry 48: 455488.

Kubo, M.O. and E. Yamada. 2014. The inter-relationship between dietary and environmental properties and tooth wear: comparisons of mesowear, molar wear rate, and hypsodonty index of extant Sika Deer populations. PLOS ONE 9: e90745.

Louys, J. and P. Robert. 2020. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586: 402-406.

MacFadden, B.J., T.E. Cerling, J.M. Harris and J. Prado. 1999. Ancient latitudinal gradients of C3/C4 grasses interpreted from stable isotopes of New World Pleistocene horse (Equus) teeth. Global Ecology and Biogeography 8: 137149.

Marwick, B. and M.K. Gagan. 2011. Late Pleistocene monsoon variability in northwest Thailand: an oxygen isotope sequence from the bivalve Margaritanopsis laosensis excavated in Mae Hong Son province. Quaternary Science Reviews 30: 30883098.

Mendoza, M and Palmqvist, P. 2008. Hypsodonty in ungulates: an adaptation for grass consumption or for foraging in open habitat? Journal of Zoology 274: 134142.

Merceron, G., E. Schulz, L. Kordos and T.M. Kaiser. 2007. Paleoenvironment of Dryopithecus brancoi at Rudabanya, Hungary: evidence from dental meso- and micro-wear analyses of large vegetarian mammals. Journal of Human Evolution 53: 331-349.

Mihlbachler, M.C., F. Rivals, N. Solounias and G.M. Semprebon. 2010. Dietary change and evolution of horses in North America. Science 331: 1178-1181.

Morley, R.J. 1991. Tertiary stratigraphic palynology in Southeast Asia: current status and new directions. Bulletin of the Geological Society of Malaysia 28: 136.

Nakhasathien, S. 2017. The serow in Thailand: distribution, habitats and some behaviors (in Thai). Seub Nakhasathien foundation, Nonthaburi, Thailand. 44 pp.

Pushkina, D., H. Bocherens, Y. Chaimanee and J.J. Jaeger. 2010. Stable carbon isotope reconstuctions of diet and paleoenvironment from the late Middle Pleistocene snake cave in Northeastern Thailand. Naturwissenschaften 97: 299309.

Safoowong M. 2015. Population, Distribution and Habitat of Goral in Protected area. Wildlife Progress 15: 167185.

Shoocongdej, R., N. Phumijumnong, K. Chintakanon, N. Pureepatpong, U. Hoontrakul and C. Treerayapiwat. 2007. Final report of Highland Archaeology Project in Pang Mapha District, Mae Hong Son Province Phase 2.Vol. 2. Bangkok: Thailand Research Fund (TRF).

Suraprasit, K., J.J. Jaeger, Y. Chaimanee, M. Benammi, O. Chavasseau, C. Yamee, P. Tian and S. Panha. 2015. A complete skull of Crocuta crocuta ultima indicates a late Middle Pleistocene age for the Khok Sung (northeastern Thailand) vertebrate fauna. Quaternary International 374: 3445.

Suraprasit, J.J. Jaeger, Y. Chaimanee, O. Chavasseau, C. Yamee, P. Tian and S. Panha. 2016. The Middle Pleistocene vertebrate fauna from Khok Sung (Nakhon Ratchasima, Thailand): biochronological and paleobiogeographical implications. ZooKeys 613: 1157.

Suraprasit, K., H. Bocherens, Y. Chaimanee, S. Panha and J.J. Jaeger. 2018. Late Middle Pleistocene ecology and climate in Northeastern Thailand inferred from the stable isotope analysis of Khok Sung herbivore tooth enamel and the land mammal cenogram. Quaternary Science Reviews 193: 2442.

Suraprasit, K., S. Jongautchariyakul, C. Yamee, C. Pothichaiya and H. Bocherens. 2019. New fossil and isotope evidence for the Pleistocene zoogeographic transition and hypothesized savanna corridor in peninsular Thailand. Quaternary Science Reviews 221: 105861.

Suraprasit, K., J.J. Jaeger, R. Shoocongdej, Y. Chaimanee, A. Wattanapituksakul and H. Bocherens. 2020. Long-term isotope evidence on the diet and habitat breath of Pleistocene to Holocene caprines in Thailand: implications for the extirpation and conservation of Himalayan gorals. Frontiers in Ecology and Evolution 8: 116.

Suraprasit, K., J.J. Jaeger, Y. Chaimanee and C. Sutcharit. 2021a. Taxonomic reassessment of large mammals from the Pleistocene Homo-bearing site of Tham Wiman Nakin (Northeast Thailand): relevance for faunal patterns in mainland Southeast Asia. Quaternary International 603: 90112.

Suraprasit, K., R. Shoocongdej, K. Chintakanon and H. Bocherens. 2021b. Late Pleistocene human paleoecology in the highland savanna ecosystem of mainland Southeast Asia. Scientific Reports 11: 16756.

Tougard, C. 1998. Les faunes de grands mammifères du Pléistocène moyen terminal de Thaïlande dans leur cadre phylogénétique, paléoécologique et biochronologique. PhD thesis. France (Montpellier): University of Montpellier II.

Tougard, C. 2001. Biogeography and migration routes of large mammal faunas in SouthEast Asia during the Late Middle Pleistocene: focus on the fossil and extant faunas from Thailand. Palaeogeography Palaeoclimatology Palaeoecology 168: 337358.

Ulbricht, A., C.M. Lutz and E. Schulz. 2015. Can mesowear analysis be applied to small mammals? A pilot-study on leporines and murines. Mammalian Biology 80: 1420.

Wattanapituksakul, A., A. Filoux, A. Amphansri and S. Tumpeesuwan. 2018. Late Pleistocene Caprinae assemblages of Tham Lod Rockshelter (Mae Hong Son province, Northwest Thailand). Quaternary International 493: 212226.

White, J.C., D. Penny, L. Kealhofer and B. Maloney. 2004. Vegetation changes from the late Pleistocene through the Holocene from three areas of archaeological significance in Thailand. Quaternary International 113: 111132.

Wilson, D.E. and Mittermeier, R.A. 2011. Handbook of the mammals of the world. Vol. 2. Hoofed mammals. Lynx editions, Barcelona

23 Views.