Checklist of the Flora and Fauna of the Karst Forests in Basey, Samar, Philippines

Elaine Loreen C. Villanueva*, Desamarie Antonette P. Fernandez, Paul John S. Tolentino, Ren Divien R. Obeña, and Inocencio E. Buot, Jr.

Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna *Corresponding email: ecvillanueva4@up.edu.ph

ABSTRACT

A comprehensive list of plant and animal biodiversity is necessary as a basis for local government and concerned agencies to enact local policies on species conservation. This article provides an enumeration of the vascular flora and vertebrate fauna in the karst forests of Basey, Samar, Philippines. A review of literature concerning plants and animals of Basey, Samar Island Natural Park, from various published sources was done. A total of 67 plants, represented by 54 genera and 38 families were included in this list, with 23 threatened and 28 Philippine endemic species. For the vertebrates, a total of 70 species were enumerated, which was composed of 6 amphibian, 12 reptile, 43 bird, and 9 mammal species. Among these, 21 were threatened and 14 were endemic to the Mindanao Pleistocence Aggregate Island Complex (PAIC). This checklist can be used as a reference in crafting local conservation policies and strategies for protection and sustainable use of this ecotourism site.

Keywords: biodiversity, ecotourism, karst forests, Samar Island Natural Park, Sohoton Caves, Natural Bridge Park.

INTRODUCTION

Karst forest or limestone forest is a type of forest formation growing on karst outcrops. It is a forest formation type in the Philippines (Fernando *et al.*, 2008) which serves as a habitat to unique fauna and flora (Tolentino *et al.*, 2020).

Southeast Asia in general has its own share of majestic limestone landscapes, about 10% of its land area (Day and Urich 2000). Out of this, 12% are only protected. The Philippines, on the other hand, is about 10% karst in terms of land area (Restificar *et al.*, 2006), 29% of which is considered protected (Day and Urich 2000). Samar Island has the largest limestone formation in the Philippines.

Samar Island Natural Park (SINP) is a protected area covering approximately one-third of Samar Island. Some biodiversity studies were previously conducted within SINP, such as a faunal assessment (Patindol, 2016), floral and timber stock (Quimio, 2017), and the biodiversity assessment of the CONserve-KAIGANGAN Program in Paranas (Villanueva *et al.*, 2021) and Taft (Obeña *et al.*, 2021).

One of the municipalities within SINP is Basey, a town which is known for its caves which serve as popular tourist destination and a place of cultural significance. Solution Caves and Natural Bridge Park is classified as a Class II cave by the Philippine Department of Environment and Natural Resources (DENR Memorandum Circular No. 2014-03). It has some portions which are hazardous but contain sensitive geological, archeological, cultural, historical, and biological value. This park also includes Pahulugan Cave, Sohoton Cave, and Bugasan Cave plus a limestone bridge for which Sohoton Park is named after (Restificar *et al.*, 2006). Another cave in Basey is the Saob Cave which is a place where there is native mat weaving among local groups of women in the municipality.

Alongside its tourism and cultural significance, there is also a need to highlight the biodiversity value of Basey, Samar. There are reports from some botanists that have provided records of the unique plants of Basey, Samar (Barcelona and Pelser, 2014; Berg, 2012; De Wilde, 1997; Madulid and Agoo, 2015; Madulid *et al.*, 2012; Obico and Alejandro, 2013; Pelser *et al.*, 2017; Suksthan, 2010; Wong, 2011), some of which are classified as threatened or are of endemic status.

This article was written to provide consolidated data on the flora and fauna of Basey, Samar, which can be used in crafting conservation policies and strategies supportive of the area's sustainable development. This paper created a checklist of plants and animals in the karst forests of Basey, Samar. It also provided a discussion on the current threats to these species and describe the implication of highlighting the karst ecosystem biodiversity to the ecotourism of Basey. The scope of this article was limited to the published literature sources on the vascular plants and vertebrate animals of the karst forest ecosystem of Basey, Samar.

MATERIALS AND METHODS

Basey is a first-class municipality in Samar province, Philippines (Figure 1). It is located at the southern portion of Samar Island, which is the easternmost major landmass in the Visayas region. Samar Island is the third largest Island in the Philippines and contains the largest karst formation in the country (Restificar *et al.*, 2006). The island is also part of the Mindanao Pleistocence Aggregate Island Complex (PAIC). The municipality is well-known for tourism due to its majestic karst

Figure 1. Map showing the location of the study area (Basey) in Samar Island, Philippines. Inset map shows Philippine map with Samar Island encircled. The map was processed using QGIS 3.4.15.

formations like the Sohoton Caves and Natural Bridge Park and the Saob Cave (Figure 2). The land cover of Basey, particularly within the boundaries of SINP, is composed mainly of open forest (National Mapping and Resource Information Authority, 2015). **Data Collection**

This checklist of plants and animals was constructed by conducting an exhaustive review of publications on Basey flora and fauna. We searched for published and peer-reviewed references on the biodiversity of Basey, Samar in Google Scholar and Naturalis Institutional Repository (https://repository.naturalis. nl/). We limited our list of species to vascular flora and vertebrate fauna. To narrow our search, we also used the keywords associated to the protected areas and limestone formations in Basey such as "Samar Island Natural Park" and "Sohoton Caves" and "Mt. Sohoton" in the search bar.

Biodiversity papers reviewed included that of Quimio (2017), Barcelona and Pelser (2014), Berg (2012), De Wilde (1997), Madulid and Agoo (2015), Madulid *et al.* (2012), Obico and Alejandro (2013), Patindol (2016),

Figure 2. (A) Photo of a limestone forest beside a national road; (B) Saob Cave, a popular place for local mat-weaving in Basey, Samar; (C) Balantak Falls, one of the popular tourist spots in Basey, Samar.

Pelser *et al.* (2017), Suksthan (2010) and Wong (2011). Other notable information such as conservation status (IUCN Red List of Threatened Species; Pelser *et al.*, 2011-onwards; DENR DAO 2017-11 and 2019-09) and endemicity were included in the tables.

RESULTS AND DISCUSSION

A. Floral Composition

Α

The checklist enumerated a total of 67 vascular plant species, represented by 54 genera and 38 families (Table 1). Among these, five were pteridophytes while the other 62 were spermatophytes. In terms of species representation, Dipterocarpaceae was the family with the highest number of species recorded (8 spp.), followed by Rubiaceae (5 spp.), and Myrtaceae (4 spp.). The most represented genera in the list were *Shorea* (5 spp.), *Myristica* (3 spp.), while *Antherostele*, *Canarium*, *Diospyros*, *Elaeocarpus*, *Garcinia*, *Hopea*, and *Syzygium* were represented by two species each. Moreover, 23 species were also noted to be threatened (Table 2) and 28 species were classified as endemic to the Philippines. Compared with the other limestone forests in the Philippines, Basey shares some similarity in terms of

taxonomic representation. In an assessment conducted in Mt. Lantoy, Cebu Island (Lillo et al., 2019), the represented families were Sapotaceae, Moraceae, Anacardiaceae, Meliaceae, Elaeocarpaceae, and Rubiaceae. The most recorded genera were Elaeocarpus, Palaquium, Syzygium, and Cinnamomum. In another study by Cadiz and Buot (2019) in Mt. Tabunan, Cebu, the most represented families included Moraceae, Meliaceae, and Araceae. Most represented genera were Ficus, Aglaia, and Garcinia. Meanwhile in the limestone forests of Dinagat Island (Lillo et al., 2019a), the most represented families include Moraceae, Rubiaceae, Euphorbiaceae, Clusiaceae, Anacardiaceae, Lauraceae, Apocynaceae, Phyllanthaceae, Rutaceae, and Araliaceae, while the most dominant genera were Ficus, Psychotria, Timonius, Osmoxylon, Phyllanthus, and Buchanania. In another study by Caringal et al. (2019) at the coastal limestone forests of Batangas, Philippines, the vegetation zones were dominated by a combination of native, endemic, and cultivated trees such as Tectona philippinensis, Terminalia polyantha, Garuga floribunda, Celtis latifolia, Tamarindus indica, and Xylocarpus rumphii.

PLANT GROUP/ Order	FAMILY	SPECIES	COMMON NAME	ENDEMICITY	REFERENCE
Pteridophyta					
Polypodiales	Lomariopsidaceae	Cyclopeltis sp.			Barcelona and Pelser (2014)
	Polypodiaceae	Pyrrosia splendens (C. Presl) Ching		Endemic	Barcelona and Pelser (2014)
		Pyrrosia nummularifolia (Swartz) Ching		Non-endemic	Barcelona and Pelser (2014)
	Pteridaceae	Pteris vittata L.		Non-endemic	Barcelona and Pelser (2014)
Gleicheniales	Matoniaceae	Phanerosorus major Diels		Non-endemic	Barcelona and Pelser (2014)
Spermatophyta: Gymnospermae					
Gnetales	Gnetaceae	Gnetum gnemon L.	Bago	Non-endemic	Quimio (2016)
Pinales	Araucariaceae	Agathis philippinensis Warb.	Almaciga	Non-endemic	Quimio (2016)
Spermatophyta: Angiospermae					
Magnoliales	Myristicaceae	Myristica laevis subsp. laevis de Wilde		Endemic	de Wilde (1997)
		Myristica philippinensis Gand.	Daguan	Endemic	Quimio (2016)
		Myristica laxiflora Metr.	Duguan-malabai	Endemic	Quimio (2016)
Laurales	Lauraceae	Cinnamomum mercadoi S.Vidal	Kalingag	Endemic	Quimio (2016)
Zingiberales	Marantaceae	Phrynium bracteosum (Warb. ex K. Schum.) Suksathan & Borchs.		Non-endemic	Suksthan et al. (2010)
Zingiberales	Marantaceae	Phrynium fasciculatum (Presl.) Horan.		Non-endemic	Suksthan et al. (2010)
Dilleniales	Dilleniaceae	Dillenia philippinensis Rolfe	Katmon	Endemic	Quimio (2016)
Fabales	Fabaceae	Albizia saponaria (Lour.) Miq.	Salingkugi	Non-endemic	Quimio (2016)
		Ormosia calavensis Blanco	Bahai	Non-endemic	Quimio (2016)
Rosales	Moraceae	Artocarpus nitidus Trécul	Kubi	Endemic	Quimio (2016)
		Ficus samarana C.C. Berg		Endemic	Berg (2012)
Fagales	Fagaceae	Lithocarpus celebicus (Miq.) Rehder [= Lithocarpus llanosii (A.DC.) Rehder]	Ulaian	Non-endemic	Quimio (2016)
	Myricaceae	<i>Morella javanica</i> (Blume) <i>I.M.Turner</i> [=Myrica javanica Blume]	Hindang	Non-endemic	Quimio (2016)
Oxalidales	Elaeocarpaceae	Elaeocarpus leytensis Men.	Bunsilak	Non-endemic	Quimio (2016)
		Elaeocarpus octopetalus Metr.	Salak	Non-endemic	Quimio (2016)

<u> </u>
ĕ
n i
.Ц
H
10
୍ପ୍
$\widetilde{}$
aı
В
a
\mathbf{S}
Ś.
ð.
as
В
ίų.
0
ц
G
st
Ň
SC
õ
e
st
e
,ō
-
S
aı
\mathbf{x}
e
th
Ц
•
ts
IJ
lĉ
5
of
Ļ,
1S
Г
_
le
ą
_

PLANT GROUP/ Order	FAMILY	SPECIES	COMMON NAME	ENDEMICITY	REFERENCE
Malphigiales	Achariaceae	Hydnocarpus subfalcata Mett.	Damol	Non-endemic	Quimio (2016)
	Calophyllaceae	Calophyllum blancoi Planch. & Triana	Bitanghol	Non-endemic	Quimio (2016)
	Clusiaceae	Garcinia oligophlebia Mett.	Diis	Endemic	Quimio (2016)
		Garcinia venulosa (Blanco) Choisy	Gatasan	Endemic	Quimio (2016)
	Euphorbiaceae	Blumeodendron kurzii (Hook.f.) J.J.Su. Ex Koord. & Valeton [= $Blumeodendron$ philippinense Metr. & Rolfe.]	Salngan	Non-endemic	Quimio (2016)
	Euphorbiaceae	Hancea cordatifolia (Slik) S.F.C.Sietra, Kulju & Welzen [=Mallotus cordatifolius Slik]		Endemic	Slik 1988; Slik and van Welzen (2001)
		Croton consanguineus Müll.Arg.	Malatuba	Endemic	Quimio (2016)
		Mallotus cumingii Müll.Arg. [= Neotrewia cumingii (Müll.Arg.) Pax & K.Hoffin.]	Apanang	Non-endemic	Quimio (2016)
	Rafflesiaceae	Rafflesia manillana Teschem.		Endemic	Madulid et al (2012)
Myrtales	Melastomataceae	Memecylon sessilifolium Mett.	Babahian	Endemic	Quimio (2016)
	Myrtaceae	Eugenia tulanan Меп. [= Jossinia tulanan (Меп.) Меп.]	Tulanan	Endemic	Quimio (2016)
		Syzygium hutchinsonii (C.B. Robinson) Metr.	Malatambis	Endemic	Quimio (2016)
		Syzygium striatulum (C.B.Rob.) Merr.	Malaruhat sapa	Endemic	Quimio (2016)
		Tristania micrantha Mett.	Tiga	Endemic	Quimio (2016)
Sapindales	Anacardiaceae	Dracontomelon dao (Blanco) Merr. & Rolfe	Dao	Non-endemic	Quimio (2016)
	Burseraceae	Canarium hirsutum Willd.	Milipili	Non-endemic	Quimio (2016)
		Canarium ovatum Engl.	Pili	Non-endemic	Quimio (2016)
	Meliaceae	Chisocheton cumingianus Harms	Balukang	Non-endemic	Quimio (2016)
		Reinwardtiodendron celebicum Koord.	Malakamanga	Non-endemic	Quimio (2016)
		Sandoricum vidalii Mett.	Malasantol	Non-endemic	Quimio (2016)
	Rutaceae	Zanthoxylum diabolicum Elmer	Madbad	Non-endemic	Quimio (2016)
Malvales	Dipterocarpaceae	Dipterocarpus gracilis Blume	Panau	Non-endemic	Quimio (2016)
		Hopea foxworthyi Elmer	Dalingdingan	Endemic	Quimio (2016)
		Hopea malibato Foxw.	Yakal-kaliot	Endemic	Quimio (2016)
		Shorea almon Foxw.	Almon	Non-endemic	Quimio (2016)

PLANT GROUP/ Order	FAMILY	SPECIES	COMMON NAME	ENDEMICITY	REFERENCE
		Shorea astylosa Foxw.	Yakal	Endemic	Quimio (2016)
		Shorea falciferoides Foxw. [= Shorea gisok Foxw.]	Yakal-gisok	Non-endemic	Quimio (2016)
		Shorea polysperma Metr.	Tangile	Endemic	Quimio (2016)
		Shorea squamata (Turcz.) Dyer ex S.Vidal	Mayapis	Endemic	Quimio (2016)
	Malvaceae	Camptostemon philippinense (S.Vidal) Becc.	Gapas-gapas	Non-endemic	Quimio (2016)
Santanales	Olacaceae	Strombosia philippinensis S. Vidal	Tamayuan	Non-endemic	Quimio (2016)
Ericales	Ebenaceae	Diospyros bulusanensis Elmer	Baganito		Quimio (2016)
		Diospyros montana Roxb.	Kamagong-bundok	Non-endemic	Quimio (2016)
	Sapotaceae	Mimusops parvifolia R.Br.	Bansalagin	Non-endemic	Quimio (2016)
		Palaquium luzoniense S.Vidal	Nato	Non-endemic	Quimio (2016)
		Planchonella velutina (Elmer) H.J.L.am [= Pouteria velutina (Elmer) Baehni]	Uakatan	Endemic	Quimio (2016)
Gentianales	Gentianaceae	Fagraea racemosa Jack	Balatbuaia	Non-endemic	Quimio (2016)
	Rubiaceae	Antherostele samarensis Obico & Alejandro		Endemic	Obico and Alejandro (2013)
		Antherostele grandistipula		Endemic	Obico and Alejandro (2013)
		Antirhea livida Elmer	Lumangog	Endemic	Quimio (2016)
		Gardenia mutabilis Reinw. ex. Blume		Non-endemic	Wong & Low (2011)
		Neonauclea formicaria (Elmer) Merr.	Hambabalud	Endemic	Quimio (2016)
		Timonius appendiculatus Merr.	Upong-upong	Endemic	Quimio (2016)
Lamiales	Bignoniaceae	Radermachera pinnata (Blanco) Seem.	Banaybanay	Non-endemic	Quimio (2016)
	Gesneriaceae	Teijsmanniodendron pteropodum (Miq.) Bakh.	Tikoko	Non-endemic	Quimio (2016)
	Lamiaceae	Vitex quinata (Lour.) F.N.Williams	Kalipapa	Non-endemic	Quimio (2016)

Table 2. Conservation status of plants in Basey, Samar.

			CONSEI STA	RVATION ATUS
PLANT GROUP/ Order	FAMILY	SPECIES	IUCN	DENR DAO 2017-11
Pteridophyta				
Polypodiales	Polypodiaceae	Pyrrosia splendens (C. Presl) Ching		VU
Gleicheniales	Matoniaceae	Phanerosorus major Diels		CR
Spermatophyta: Gymnospermae Pinales	Araucariaceae	Agathis philippinensis Warb.		VU
Spermatophyta: Angiospermae				
Laurales	Lauraceae	Cinnamomum mercadoi S.Vidal	LC	OTS
Dilleniales	Dilleniaceae	Dillenia philippinensis Rolfe	NT	
	Euphorbiaceae	Hancea cordatifolia (Slik) S.E.C.Sierra, Kulju & Welzen [=Mallotus cordatifolius Slik] Mallotus cumingii Müll.Arg. [= Neotrewia cumingii (Müll.Arg.) Pax & K.Hoffm.]	CR	
Myrtales	Rafflesiaceae Myrtaceae	<i>Rafflesia manillana</i> Teschem. <i>Syzygium hutchinsonii</i> (C.B. Robinson) Merr.	CR	EN
Sapindales	Anacardiaceae	Dracontomelon dao (Blanco) Merr. & Rolfe		VU
		Canarium ovatum Engl.	LC	OTS
		Sandoricum vidalii Merr.	VU	
Malvales	Dipterocarpaceae	Dipterocarpus gracilis Blume	VU	VU
		Hopea foxworthyi Elmer	EN	CR
		Hopea malibato Foxw.	VU	CR
		Shorea almon Foxw.	NT	VU
		Shorea astylosa Foxw.	EN	CR
		Shorea falciferoides Foxw. [= Shorea gisok Foxw.]		VU
		Shorea polysperma Merr.	LC	VU
	Malvaceae	Camptostemon philippinense (S.Vidal) Becc.	EN	
Ericales	Sapotaceae	Palaquium luzoniense S.Vidal	VU	VU
Gentianales	Rubiaceae	Antherostele samarensis Obico & Alejandro Timonius appendiculatus Merr.	VU	CR

*CR – Critically Endangered, EN – Endangered, VU – Vulnerable, NT – Near Threatened, OTS – Other Threatened Species, LC – Least Concern

Furthermore, if we compared the plant species number in Basey to other municipalities of Samar Island, it shared some similarities with Paranas in terms of high species representation of dipterocarps (Villanueva *et al.*, 2021). Basey had higher number of plant species (67 spp.) than in Taft (30 spp.) (Obeña *et al.*, 2021) and Guiuan (41 spp.) (Fernandez *et al.*, 2020), although relatively lower than that of Paranas (Villanueva *et al.*, 2021). However, since the data gathered in this study was derived from published and not field assessment data, the comparison of flora indicated here was not conclusive. Future studies based on field data will support and complement what

had been gathered in this research.

B. Faunal Composition

For the vertebrate faunal checklist, a total of 70 species were recorded by Patindol (2016). The list was composed of 6 amphibian species, 12 reptile species, 43 bird species, and 9 mammal species (Table 3). Among these, 34 species (48.57%) were endemic to the Philippines and 21 (30%) were threatened species (Table 4) according to the International Union for Conservation of Nature (IUCN) Red List of Threatened Species and the Updated National List of Threatened Philippine Fauna (DENR

DAO 2019-19).

This checklist of vertebrate species is similar in composition to that of other karst forest areas in Samar Island such as Guiuan (Fernandez *et al.*, 2021), Paranas (Villanueva *et al.*, 2021), and Taft (Obeña *et al.*, 2021). However, it is important to note that the paper of Patindol (2016) was the only published study on vertebrates in Basey that was available. Thus, more studies in the area need to be conducted in order to have a better understanding of its faunal composition.

C. Notable Species

The results from Tables 1-4 show that Basey has unique biodiversity that is worthy of protection and conservation. Some species are noted to be of limited distribution due their endemism. There were also species that were included in the IUCN and the national list of threatened species (DENR DAO 2017-11 and 2019-19). Some notable plant species include the threatened dipterocarp species such as Dipterocarpus gracilis, Hopea foxworthyi, Hopea malibato, Shorea almon, Shorea astylosa, Shorea falciferoides, Shorea polysperma (Table 2). Dipterocarps are common dominating trees in Southeast Asian forests (Ghazoul, 2016) and can naturally grow on karst landscapes like in Bohol Island, Philippines (Fernando et al., 2009). These are well known to be excellent sources of timber (Ghazoul, 2016). Dipterocarps also play a critical ecological role as they serve as a habitat for birds like the Philippine eagle (Bueser et al., 1998), a food source to herbivores, and exhibit symbiotic associations with ectomychorrhizal fungi (Ghazoul, 2016). Recent studies also recorded rare and Critically Endangered (DAO 2017-11) plant species in Basey. Antherostele samarensis, a Rubiaceae species previously found in Mindoro Island, received its second species record in Mt. Sohoton (Obico and Alejandro 2013). Phanerosorus major, a fern species which is widespread in New Guinea and Moluccas, was first recorded in the country particularly in Sohoton Natural Bridge National Park (Barcelona and Pelser, 2014).

There were also many notable vertebrate fauna species recorded in Basey by Patindol (2016). Of the aforementioned 34 species endemic to the Philippines, there are even narrower endemics such as the 14 species that can only be found in the Mindanao PAIC (Table 3). This biogeographic region includes Mindanao, Samar, Leyte, Bohol and adjacent islands which were all theoretically interconnected by land bridges during the last ice age (Heaney, 1986). Furthermore, the wildlife of Basey include some highly threatened species such as the critically endangered Philippine

eagle (*Pithecophaga jefferyi*) Philippine hanging parrot (*Loriculus philippensis*), the endangered Southeast Asian box turtle (*Cuora amboinensis*), southern rufous hornbill

box turtle (*Cuora amboinensis*), southern rufous hornbill (*Buceros hydrocorax semigaleatus*), Philippine eagleowl (*Bubo philippensis*), Philippine brown deer (*Cervus mariannus*), and large flying fox (*Pteropus vampyrus*). Unfortunately, many of the species listed here are known to face threats such as habitat loss and exploitation in the wildlife trade (BCSP, 2020).

D. Conservation Concerns

Like most natural ecosystems, human activities can be seen as a threat to the biodiversity in Basey. Forest conversion has been considered as a threat to biodiversity in Southeast Asia (Sodhi et al., 2004). The Philippines has lost great areas its forest cover during the last century, and Basey is not excluded in this situation. In a study on the forest loss among the terrestrial protected areas in the Philippines (Apan et al., 2017), Samar Island Natural Park has the second highest area of forest lost recorded (12,340 ha). The cumulative forest cover loss rate in SINP is 2.79% from 2001 to 2012. The study also noted a relatively high forest loss in Sohoton Caves and Natural Bridge Park (419 ha, 7.44%) during the same period. Illegal activities such as poaching of timber (Quimio 2016) and hunting of wildlife, like in the case of the Philippine eagle (Ibañez et al., 2016) could also threaten the existence of these valuable species. Moreover, the Maydolong-Basey road is being constructed to boost ecotourism activities in Samar. The road construction has been quite controversial as it will pass through an old-growth forest (Bugayong et al., 2016).

To protect and conserve this biodiversity, the management of these resources should start within the local communities in Basey. Protected areas in the Philippines like SINP and Sohoton Caves and Natural Bridge Park are not entirely free from human habitation (Catibog-Sinha, 2010). Thus, environmental protection in this area must be designed in such a way that people are actively involved, while strictly implementing the existing local and national policies on environment and conservation. The existing ecotourism activities managed by the DENR and the Sohoton Service Cooperative, a people's organization, are a good start to promote biodiversity conservation in Basey. When enforced with other conservation mechanisms and strategies such as protected area approach, payment for ecosystem services, and monitoring, ecotourism can protect forest ecosystems (Brandt and Buckley, 2018). Ecotourism also supports wildlife and protected areas while providing diversified livelihood and strengthened institutions among locals (Stronza et al., 2019).

ORDER	FAMILY	SPECIES	COMMON NAME	DISTRIBUTION
Amphibians				
Anura	Ranidae	Sanguirana albotuberculata	Everett's frog	Mindanao PAIC Endemic
		Staurois natator	Mindanao splash frog	Mindanao PAIC Endemic
	Microhylidae	Kalophrynus sinensis	Spotted narrow-mouthed frog	Resident
	Megophryidae	Megophrys stejnegeri	Horned litter toad	Mindanao PAIC Endemic
	Rhacophoridae	Philautus leitensis	Leyte forest tree frog	Mindanao PAIC Endemic
		Polypedates leucomystax	Common tree frog	Resident
Reptiles				
Squamata	Agamidae	Draco mindanensis	Mindanao flying lizard	Mindanao PAIC Endemic
		Hydrosaurus pustulatus	Philippine sailfin lizard	Philippine Endemic
	Scincidae	Brachymeles gracilis	Common burrowing skink	Philippine Endemic
		Otosaurus cumingi	Cuming's sphenomorphus	Philippine Endemic
		Sphenomorphus acutus	Point-headed sphenomorphus	Philippine Endemic
	Gekkonidae	Gekko gecko	Tokay gecko	Resident
	Colubridae	Tropidonophis dendrophiops	Spotted water snake	Philippine Endemic
		Calamaria lumbricoidea	Dark-bellied worm snake	Resident
	Boidae	Malayopython reticulatus	Reticulated python	Resident
	Elapidae	Naja samarensis	Samar cobra	Mindanao PAIC Endemic
		Ophiophagus hannah	King cobra	Resident
Testudinata	Emydidae	Cuora amboinensis	Southeast Asian box turtle	Resident
Birds				
Accipitriformes	Accipitridae	Pithecophaga jefferyi	Philippine eagle	Philippine Endemic
		Haliastur indus	Brahminy kite	Resident
Anseriformes	Anatidae	Anas luzonica	Philippine mallard	Philippine Endemic
Bucerotiformes	Bucerotidae	Buceros hydrocorax semigaleatus	Southern rufous hornbill	Mindanao PAIC Endemic
Caprimulgiformes	Apodidae	Collocalia esculenta	Philippine glossy swiftlet	Philippine Endemic
Columbiformes	Columbidae	Gallicolumba crinigera	Mindanao bleeding-heart	Mindanao PAIC Endemic
		Ducula aenea	Green imperial pigeon	Resident

Table 3. List of vertebrate fauna species in Basey, Samar (Source: Patindol, 2016).

ORDER	FAMILY	SPECIES	COMMON NAME	DISTRIBUTION
		Streptopelia chinensis	Spotted dove	Resident
		Chalcophaps indica	Asian emerald dove	Resident
Coraciiformes	Alcedinidae	Ceyx melanurus	Philippine dwarf- kingfisher	Philippine Endemic
	Coraciidae	Eurystomus orientalis	Oriental dollarbird	Resident
Cuculiformes	Cuculidae	Centropus melanops	Black-faced coucal	Mindanao PAIC Endemic
		Centropus viridis	Philippine coucal	Philippine Endemic
	Megapodiidae	Megapodius cumingii	Tabon scrubfowl	Resident
Gruiformes	Rallidae	Amanrornis phoenicurus	White-breasted waterhen	Resident
		Gallinula chloropus	Common moorhen	Resident
		Galliralus torquatus	Barred rail	Resident
		Rallina eurizonoides	Slaty-legged rake	Resident
Passeriformes	Artamidae	Artamus leucorynchus leucorhynchus	White-breasted woodswallow	Resident
		Lalage nigra	Pied triller	Resident
	Cisticolidae	Orthotomus frontalis	Rufous-fronted tailorbird	Mindanao PAIC Endemic
		Micromacronus leytensis	Leyte plumed-warbler	Mindanao PAIC Endemic
	Corvidae	Corvus macrorhynchos	Large-billed crow	Resident
	Estrildidae	Lonchura atricapilla	Chestnut munia	Resident
	Irenidae	Irena cyanogastra	Philippine fairy-bluebird	Philippine Endemic
	Laniidae	Lanius cristatus	Brown shrike	Resident
		Lanius schach	Long tailed shrike	Resident
	Monarchidae	Terpsiphone cinnamomea	Rufous paradise- flycatcher	Philippine Endemic
	Motacillidae	Motacilla cinerea	Gray wagtail	Resident
	Nectariniidae	Aethopyga pulcherrima	Metallic-winged sunbird	Mindanao PAIC Endemic
	Oriolidae	Oriolus chinensis	Black-naped oriole	Resident
	Pachycephalidae	Pachycephala philippinensis	Yellow-bellied whistler	Philippine Endemic
	Passeridae	Passer montanus	Eurasian Tree sparrow	Resident
	Pycnonotidae	Hypsipetes philippinus saturatior	Philippine bulbul	Philippine Endemic
		Hypsipetes everetti	Yellowish bulbul	Mindanao PAIC Endemic
		Pycnonotus goiavier	Yellow-vented bulbul	Resident
	Sturnidae	Sarcops calvus	Coleto	Philippine Endemic
		Aplonis panayensis	Asian glossy starling	Resident
Pelecaniformes	Ardeidae	Bubulcus ibis	Cattle egret	Resident

Table 3. List of vertebrate fauna species in Basey, Samar (Source: Patindol, 2016) (continued).

ORDER	FAMILY	SPECIES	COMMON NAME	DISTRIBUTION
Pelecaniformes	Ardeidae	Nycticorax caledonicus	Rufous night heron	Resident
Psittaciformes	Psittaculidae	Loriculus philippensis	Philippine hanging-parrot	Philippine Endemic
		Bolbopsittacus lunulatus	Guaiabero	Philippine Endemic
Strigiformes	Strigidae	Bubo philippensis	Philippine eagle-owl	Philippine Endemic
Mammals				
Artiodactyla	Suidae	Sus philippensis	Philippine warty pig	Philippine Endemic
	Cervidae	Cervus mariannus	Philippine brown deer	Philippine Endemic
Carnivora	Viverridae	Paradoxurus philippinensis	Common palm civet	Resident
		Viverra tangalunga	Malay civet	Resident
Chiroptera	Pteropodidae	Pteropus vampyrus	Large flying fox	Resident
Insectivora	Soricidae	Suncus murinus	Asian house shrew	Introduced
Primates	Tarsiidae	Tarsius syrichta	Philippine tarsier	Mindanao PAIC Endemic
	Cercopithecidae	Macaca fascicularis	Long-tailed macaque	Resident
Rodentia	Muridae	Rattus tanezumi	Asian house rat	Introduced

Table 3. List of vertebrate fauna species in Basey, Samar (Source: Patindol, 2016) (continued).

Table 4. List of threatened fauna species in Basey, Samar.

			CONSERVA	FION STATUS	
ORDER	FAMILY	SPECIES	IUCN	DAO	
				2019-09	
Amphibians					
Anura	Megophryidae	Megophrys stejnegeri	LC	OTS	
Reptiles					
Squamata	Agamidae	Draco mindanensis	VU	None	
		Hydrosaurus pustulatus	VU	OTS	
	Gekkonidae	Gekko gecko	LC	OTS	
	Boidae	Malayopython reticulatus	LC	OTS	
	Elapidae	Naja samarensis	LC	OTS	
		Ophiophagus hannah	VU	OTS	
Testudinata	Emydidae	Cuora amboinensis	EN	OTS	
Birds					
Accipitriformes	Accipitridae	Pithecophaga jefferyi	CR	CR	
Anseriformes	Anatidae	Anas luzonica	VU	VU	
Bucerotiformes	Bucerotidae	Buceros hydrocorax semigaleatus	VU	EN	
Columbiformes	Columbidae	Gallicolumba crinigera	VU	VU	
Coraciiformes	Alcedinidae	Ceyx melanurus	VU	VU	
	Megapodiidae	Megapodius cumingii	LC	VU	
Passeriformes	Cisticolidae	Micromacronus leytensis	DD	VU	
Psittaciformes	Psittaculidae	Loriculus philippensis	LC	CR	
Strigiformes	Strigidae	Bubo philippensis	VU	EN	
Mammals					
Artiodactyla	Suidae	Sus philippensis	VU	VU	
	Cervidae	Cervus mariannus	VU	EN	
Chiroptera	Pteropodidae	Pteropus vampyrus	NT	EN	
Primates	Tarsiidae Cercopithecidae	Tarsius syrichta Macaca fascicularis	NT VU	OTS None	

*CR – Critically Endangered, EN – Endangered, VU – Vulnerable, NT – Near Threatened, OTS – Other Threatened Species, LC – Least Concern

CONCLUSION AND RECOMMENDATIONS

This study has shown the unique biodiversity of the limestone forests of Basey, Samar Island. The lists of flora and fauna have shown some endemic and threatened species. While the karst landscape has provided opportunities such as ecotourism, livelihood, and resources to its locals, the human activities in the forests can also cause impacts on biodiversity. Thus, there should be a concerted effort among local sectors on environment, education, culture, and the arts to conserve and sustainably manage the biodiversity in Basey, Samar. Local programs should also promote the active involvement of the women and the youth in the conservation efforts.

The available information from this study is a good baseline for educating the people on the biodiversity of Basey. It can also be used in the formulation of local policies that is supportive of the forest conservation and sustainable use. However, to augment and update this information, on-site monitoring on the limestone forests is still recommended for validation.

ACKNOWLEDGEMENTS

This article is one of the outputs of the CONserve-KAIGANGAN (Assessment and Conservation of Forest over Limestone Ecosystem Biodiversity in Selected Municipalities of Samar Island, Philippines), a biodiversity research program funded by the Department of Science and Technology (DOST) under the Grantsin-Aid (GIA) Program. The authors would like to thank the following: Institute of Biological Sciences, University of the Philippines Los Baños (IBS-UPLB) for providing facilities for the authors; the Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (DOST-PCAARRD) for monitoring the program; Samar Island Natural Park - Protected Area Management Bureau (SINP-PAMB) and DENR Region 8 for issuing the Gratuitous Permit of the program (DENR-GP No. 2020-10); Samar State University (SSU); and the municipal government of Basey, Samar for providing logistical support and assistance for the researchers; and the Science Education Institute (DOST-SEI) for providing opportunity for the first author to work under the research program under the Career Incentive Program (CIP).

REFERENCES

Apan, A., L.A. Suarez, T. Maraseni and J.A. Castillo.
 2017. The rate, extent and spatial predictors of forest loss (2000-2012) in the terrestrial protected areas

of the Philippines. Applied Geography 81: 32-42.

- Barcelona, J.F. and P.B. Pelser. 2014. *Phanerosorus* (Matoniaceae), a new fern genus record for the Philippines. *Phytotaxa* 170(2): 133–135.
- BCSP. Biodiversity Conservation Society of the Philippines (eds.). 2020. Philippine Red List of Threatened Wild Fauna Part I - Vertebrates.
 Biodiversity Management Bureau, Department of Environment and Natural Resources, Philippines.
- Berg, C.C. 2012. Seven new Malesian species of *Ficus* (Moraceae). *Blumea* 57: 147–157.
- Brandt, J.S. and R.C. Buckley. 2018. A global systematic review of empirical evidence of ecotourism impacts on forests in biodiversity hotspots. *Current Opinion in Environmental Sustainability* 32: 112–118.
- Bueser, G.L.L., D.S. Afan, G.A. Balaquit, K.M. Gatil and J. C. Ibañez. 1998. Distribution and conservation of the Philippine Eagle (*Pithecophaga jefferyi*) in Davao Oriental and Davao Province. Sylvatrop Technical Journal of the Philippine Ecosystems and Natural Resources 8(1&2): 114–119.
- Bugayong, L.A., P.C. Dolom and A. P. Carandang. 2016. Assessment of Drivers of Deforestation and Forest Degradation in Eastern Samar and Davao Oriental REDD-plus Project Sites. Manila, Philippines: Deutsche Gesellschaft f
 ür International Zusammenarbeit (GIZ) GmbH. 84pp.
- Cadiz, G.O. and I.E. Buot, Jr. 2010. An Enumeration of the Vascular Plants of Mount Tabunan, Cebu Island, Philippines. *The Thailand Natural History Museum Journal* 4(2): 71–77.
- Catibog-Sinha, C. 2010. Biodiversity conservation and sustainable tourism: Philippine Initiatives. *Journal* of Heritage Tourism 5(4): 297–309.
- Day, M.J. and P.B. Urich. 2000. An assessment of protected karst landscapes in Southeast Asia. *Cave and Karst Science* 27(2): 61–70.
- DENR Administrative Order 2017-11. Updated National List of Threatened Philippine Plants and Their Categories. Downloaded from https:// bmb.gov.ph/index.php/e-library/laws-andpolicies/denr-administrative-orders/dao-2017-2020?download=197:denr-administrativeorder-2017-11 on 13 July 2021.
- DENR Administrative Order 2019-09. Updated National List of Threatened Philippine Fauna and Their Categories. Downloaded from https:// bmb.gov.ph/index.php/e-library/laws-andpolicies/denr-administrative-orders/dao-2017-2020?download=383:denr-administrativeorder-2019-09 on 13 July 2021.
- DENR Memorandum Circular No. 2014-03. *List of Additional Classified Caves*. Downloaded from https://bmb.gov.ph/index.php/e-library/laws-and-

policies/denr-memorandum-circular-order/dmcdmo-2007-2016?download=228:denr-memorandumcircular-order-2014-03 on 13 July 2021.

- de Wilde W.J.J.O. 1997. Notes on Southeast Asian and Malesian Myristica and description of new taxa (Myristicaceae). *Blumea* 42: 111–190.
- Escoda, A.H. 1953. The mat industry of Basey, Samar (Philippines). *Folklore Studies* 12: 119–123.
- Fernandez, D.A.P., M.D. delos Angeles, R.D.R.Obeña, P.J.S.Tolentino, E.L.C.Villanueva and I.E. Buot, Jr. 2020. Fauna and Flora of Forests over Limestone in Calicoan Island, Guiuan Marine Reserve Protected Landscape and Seascape (GMRPLS), Eastern Samar, Philippines. *Journal of Marine and Island Cultures* 9(2): 86–104.
- Fernando, E.S., M.J.M. Bande, R.A. Piollo, D.D.Sopot, N.E. Dolotino and W.G. Granert. 2009. Dipterocarpaceae of Bohol Island, Philippines. *Asia Life Sciences* 18(1): 121–138.
- Fernando, E.S., M.N. Suh, K. Lee and D.K. Lee. 2008. Forest Formations of the Philippines. ASEAN – Korea Environmental Cooperation Unit (AKECHU). Geobook Publishing Co. www.geobook.co.kr. 232 pp.
- Ghazoul, J. 2016. *Dipterocarp Biology, Ecology, and Conservation*. Oxford University Press. 320pp.
- Heaney, L.R. 1986. Biogeography of mammals in SE Asia: Estimates of rates of colonization, extinction and speciation. *Biological Journal of the Linnean Society* 28: 127–165.
- Ibañez, J., A.M. Sumaya, G. Tampos and D. Salvador. 2016. Preventing Philipine Eagle hunting: What are we missing? *Journal of Threatened Taxa* 8(13): 9505–9511.
- IUCN 2021. *The IUCN Red List of Threatened Species*. *Version 2021-1*. Downloaded from https://www. iucnredlist.org on 13 July 2021.
- Lillo, E.P, A.B.B. Malaki, S.M.T. Alcazar, R.U. Nuevo and R. Rosales. 2019. Native Trees on Mount Lantoy Key Biodiversity Areas (KBA), Argao, Cebu, Philippines. *Philippine Journal of Science* 148(2): 359–371.
- Lillo, E.P., E.S. Fernando and M.J.R. Lillo. 2019. Plant diversity and structure of forest habitat types on Dinagat Island, Philippines. *Journal of Asia-Pacific Biodiversity* 12: 83–105.
- Madulid, D.A. and E.M.G. Agoo. 2015. A critical review of the taxonomic status of *Rafflesia philippinensis* Blanco (Rafflesiaceae) from the Philippines. *Philippine Journal of Systematic Biology* 9: 1-9.
- Madulid, D.A., I.E.Buot, Jr. and E.M.G. Agoo. 2012. The Philippine *Rafflesia panchoana* from Mt. Makiling, Luzon and *R. manillana* from Basey, Samar Compared (Rafflesiaceae). *Philippine Journal*

of Systematic Biology 6:43–45.

- National Mapping and Resource Information Authority. 2015. *Land Cover Map [Geospatial data]*.
- Obeña, R.D.R., P.J.S. Tolentino, E.L.C.Villanueva, D.A.P. Fernandez, M.D. delos Angeles and I.E. Buot, Jr. 2021. Flora and Fauna Inventory of Limestone Forests in Taft, Eastern Samar, Philippines. *The Thailand Natural History Museum Journal* 15(1): 1–20.
- Obico, J.J.A. and G.J.D. Alejandro. 2013. A new species of *Antherostele* (Urophylleae, Rubioideae, Rubiaceae) from Mt. Sohoton, Samar, Philippines. *Phytotaxa* 104(1): 53–57.
- Patindol, T.A. 2016. Post Biological Assessment of Faunal Resources in the Samar Island Natural Park. *Annals of Tropical Research* 38(2): 52–73.
- Pelser, P.B., J.F. Barcelona and D.L. Nickrent (Eds). 2011-onwards. Co's Digital Flora of the Philippines. Downloaded from http://www.philippineplants.org on 13 July 2021.
- Pelser, P.B., D.L. Nickrent, C.E.C. Gemmill and J.F. Barcelona. 2017. Genetic diversity and structure in Philippine *Rafflesia lagascae* Complex (Rafflesiaceae) inform its taxonomic delimitation and conservation. *Systematic Botany* 42(3): 543–553.
- Quimio, J.M. 2016. Floral Composition and Timber Stock of Forest in the Samar Island Natural Park. *Annals of Tropical Research* 38(2): 30–51.
- Restificar, S.D.F., M.J. Day and P.B. Urich. 2006. Protection of Karst in the Philippines. *Acta Carsologica* 35(1): 121–130.
- Sodhi, N.S., L.P. Koh, B.W. Brook and P.K.L. Ng. 2004. Southeast Asian biodiversity: an impending disaster. *TRENDS in Ecology and Evolution* 19(12): 654–660.
- Stronza, A.L., C.A. Hunt and L.A. Fitzgerald. 2019. Ecotourism for Conservation? *Annual Review of Environment and Resources* 44: 229–253.
- Sukshthan, P., D.A. Madulid and F. Borchsenius. 2010. Marantaceae in the Philippines. *Taiwania* 55(1): 28-36.
- Tolentino, P.J.S., J.R.L. Natividad, M.D. delos Angeles, D.A.P. Fernandez, E.L.C. Villanueva, R.D.R. Obeña, and I.E. Buot, Jr. 2020. Review: Biodiversity of forests over limestone in Southeast Asia with Emphasis on the Philippines. *Biodiversitas* 21(4): 1597–1613.
- Villanueva, E.L.C., D.A.P. Fernandez, M.D. delos Angeles, P.J.S.Tolentino, R.D.R. Obeña and I.E. Buot, Jr. 2021. Biodiversity in Forests over Limestone in Paranas, Samar Island Natural Park (SINP) A UNESCO World Natural Heritage Site Nominee. *Tropical Natural History* 21(1): 119–145.
- Wong, K.M. and Y.W. Low. 2011. A revision of Philippine *Gardenia* (Rubiaceae). *Edinburgh Journal*

of Botany 68(1): 11-32.

Received: 10 July 2021 Accepted: 3 November 2021 Published: 11 November 2021 Published in Print: 31 December 2021